Cebirsel İfadeler
- BU KONUDA ÖĞRENECEKLERİMİZ:
- √ Değişken, Terim, Katsayı Nedir?
- √ Cebirsel İfadeleri Farklı Biçimde Yazma
- √ Cebirsel İfadeleri Çarpma
Öncelikle cebirsel ifadelerle ilgili temel kavramlar olan değişken, bilinmeyen nedir, cebirsel ifade nedir, katsayı nedir, terim nedir, sabit terim nedir hatırlayalım. Ayrıca bu konudan önce cebirsel ifadelerle toplama ve çıkarma işlemi konusunu da tekrar etmeniz faydanıza olacaktır.
CEBİRSEL İFADELER
CEBİRSEL İFADE VE BİLİNMEYEN NEDİR?
ÖRNEK : Bir sayının 2 katının 3 fazlası ifadesini cebirsel ifade olarak yazalım.
Cebirsel ifademiz: 2x + 3 olur. Bu cebirsel ifadede “x” bilinmeyendir.
TERİM VE KATSAYI NEDİR?
ÖRNEK : 5x ifadesinde x bilinmeyen, 5 ise katsayıdır.
ÖRNEK : 5x + 2y − 7 ifadesini inceleyelim.
5x + 2y − 2 ifadesini “+” ve “−” işaretlerinin önünden bölersek terimleri elde ederiz.
5x / + 2y / − 7 ifadesi 3 terimlidir. Terimleri 5x, 2y ve −7’dir
SABİT TERİM NEDİR?
ÖRNEK : 6y + 12 ve −3x − 9 ifadelerinde sabit terimleri bulalım.
6y + 12 cebirsel ifadesinde sabit terim +12’dir.
−3x − 9 cebirsel ifadesinde sabit terim −9’dur.
5x2 − 7 cebirsel ifadesinde kat sayılar 5 ve −7’dir.
CEBİRSEL İFADELERDE ÇARPMA İŞLEMİ
1 Terimli ile 1 Terimli Cebirsel İfadeyi Çarpma
ÖRNEK : 6 ifadesi ile 2x ifadesini çarpalım.
6 ile 2x’in katsayısı (2) çarpılır. 6.2=12
Bilinmeyen olarak sadece x olduğu için sonuç 12x bulunur.
ÖRNEK : 3x ifadesi ile 5x ifadesini çarpalım.
3x’in katsayısı (3) ile 5x’in katsayısı (5) çarpılır. 3.5=15
3x’teki bilinmeyen (x) ile 5x’teki bilinmeyen (x) çarpılır. x.x=x2
Sonuç: 3x.5x = 15x2
ÖRNEK : −4x ile 2y’i çarpalım
Katsayılar çarpımı: −4.2=−8
Biinmeyenler çarpımı: x.y = xy
−4x . 2y = −8xy
1 Terimli ile 2 Terimli Cebirsel İfadeyi Çarpma
ÖRNEK : 5 . ( 7x + 2y ) işlemini yapalım.
Tek terimli 5, diğer iki terimle ayrı ayrı çarpılır. (Dağılma Özelliği)
= 5 . 7x + 5 . 2y
= 35x + 10y
ÖRNEK : −2x . ( x + 3 ) işleminde de aynı şekilde x ve +3’ü sırayla −2x ile çarparız.
= ( −2x . x) + ( −2x . 3 )
= (−2x2) + (−6x)
2 Terimli ile 2 Terimli Cebirsel İfadeyi Çarpma
ÖRNEK : ( 2x + 3 ) . ( 4x + 1 ) işlemini yapalım.
İlk ifadedeki 2x’i diğer ifadedeki 4x ve +1 ile ayrı ayrı çarpacağız.
Benzer şekilde ilk ifadedeki +3’ü diğer ifadedeki 4x ve +1 ayrı ayrı çarpacağız.
= (2x.4x) + (2x.+1) + (3.4x) + (+3.+1)
= 8x2 + 2x + 12x + 3 [2x ile 12x toplanır]
= 8x2 + 14x + 3
ÖRNEK : ( x − 1 )2 işlemini yapalım.
( x − 1 )2 = ( x − 1 ) . ( x − 1 ) demektir.
Önce ilk ifadedeki x ile diğer ifadedeki x ve −1 çarpılır.
Sonra ilk ifadedeki −1 ile diğer ifadedeki x ve −1 çarpılır.
= (x.x) + (x.−1) + (−1.x) + (−1.−1)
= x2 + (−x) + (−x) + 1 [−x ile −x toplanır]
= x2 −2x +1
KONUYU PEKİŞTİRMEK İÇİN:
- √ Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar.
- √ Cebirsel ifadelerin çarpımını yapar.
ÖNCEKİ KONU | SONRAKİ KONU |